

REPORT

Preliminary Geotechnical Investigation

Proposed Residential Subdivision, 5113 Old Brock Road, Hamlet of Claremont, Pickering, Ontario

Submitted to:

Claremont Developments Inc.

3190 Steeles Avenue East, Suite 300
Markham, Ontario
L3R 1G9

 $\label{eq:Attention: Ms. Farrah Ward, P.Eng.\ Director,\ Land\ Development$

Submitted by:

Distribution List

e-Copy - Claremont Developments Inc.

e-Copy - Golder Associates Ltd.

i

Table of Contents

1.0	INTRODUCTION1							
2.0	SITE AND PROJECT DESCRIPTION							
3.0	PREVIOUS WORKS2							
4.0	INVESTIGATION PROCEDURES2							
5.0	SITE GEOLOGY AND STRATIGRAPHY2							
	5.1	Regional Geology	2					
	5.2	Subsurface Conditions	2					
	5.2.1	Topsoil	3					
	5.2.2	Clayey Silt	3					
	5.2.3	Sandy Silt and Silt	3					
	5.2.4	Glacial Till	3					
	5.2.5	Silty Sand and Sandy Silt	4					
	5.2.6	Sand	4					
	5.2.7	Groundwater	4					
6.0	DISC	USSION	4					
	6.1	Preliminary Geotechnical Information	5					
	6.1.1	Site Grading	5					
	6.1.2	House Foundations	5					
	6.1.3	Storm Sewers	5					
	6.1.4	Flexible Pavements	6					
	6.1.5	Storm Water Management Ponds	6					
7.0	CLOS	SURE	7					

ATTACHMENTS

Important Information and Limitations of This Report

Method of Soil Classification

Symbols and Terms Used on Records of Boreholes and Test Pits

Records of Boreholes

Figure 1 – Key Plan

Figure 1a – Key Plan with Physiographic Regions of Southern Ontario

Figure 2 – Borehole Location Plan

Figure 3 - Grain Size Distribution Curve

Figure 4 – Plasticity Chart

APPENDIX A

Table B1: Water Level Data

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by Claremont Developments Inc. (CDI) to provide geotechnical consulting services in respect of the design of the proposed residential subdivision development (the project) to be constructed at 5113 Old Brock Road (the Site) in the Hamlet of Claremont, Ontario, as shown on Figure 1 (attached).

This report serves to update the geotechnical information in respect of the proposed zoning and subdivision of 5113 Old Brock Road, as fully described in the Planning Report by Malone Given Parsons dated July 2021.

This report draws on our previous report dated August 2012 for background information and where this information is applied it will be referenced.

The purpose of the investigation was to obtain information on the general subsurface soil and groundwater conditions at the Site by means of a limited number of boreholes and laboratory tests. Based on an interpretation of the factual information available for this Site, this report provides engineering comments, recommendations and parameters for the geotechnical design aspects of the project, including selected construction considerations which could influence design decisions. It should be noted that this report addresses only the geotechnical (physical) aspects of the subsurface conditions at the Site. The geo-environmental (chemical) aspects of the project area are addressed under separate cover.

This report provides the results of the geotechnical investigation and should be read in conjunction with the attached "Important Information and Limitations of This Report" which forms an integral part of this document. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within eighteen months of the date of the report, Golder should be given an opportunity to confirm that the recommendations in this report are still valid.

2.0 SITE AND PROJECT DESCRIPTION

The Site is located north of Central Street, between Brock Road (Claremont Bypass) and Old Brock Road in the Hamlet of Claremont, City of Pickering, Regional Municipality of Durham as shown on the Key Plan, Figure 1. The site is bounded by existing residential houses to the south, Old Brock Road to the west, Brock Road to the east, and residential properties and a woodlot to the north. The Site primarily consists of an irregularly shaped, agricultural parcel of land. The terrain of the subject property is uneven with complex multidirectional drainage pattern. Generally, higher elevations (about 278 m) are found at the central-east portion of the Site and the lowest (about 267 m) at the central-west portions of the Site.

The proposed residential subdivision will consist of residential lots serviced by private (water and sewage) services, two storm water management ponds, a park, open space blocks and local roads.

3.0 PREVIOUS WORKS

Golder completed a limited scope of geotechnical and hydrogeological work as part of the acquisition due diligence process in 2012. This work was presented in a technical memorandum entitled:

"Preliminary Geotechnical and Hydrogeological Investigation in Support of Draft Plan Submission for a Proposed Residential Subdivision, Lane Street and Brock Road, Claremont, City of Pickering, Ontario" dated August 23, 2012.

The data obtained from the boreholes drilled for this memorandum are included in this report.

4.0 INVESTIGATION PROCEDURES

The drilling program for this preliminary geotechnical investigation was carried out in two phases: Boreholes 12-1 through 12-6 were drilled between February 23 and 28, 2012 and Boreholes 17-7 through 17-19 were drilled between October 4 and 10, 2017 at the locations shown on the Borehole Location Plan, Figure 2 (attached). Borehole locations were selected based on the proposed street and service block locations available at the time of our investigations with the intent of obtaining information on the general subsurface soil and groundwater conditions across the Site. The boreholes were drilled using a track mounted drillrig supplied and operated by specialist drilling subcontractor. The drilling subcontractors used for this investigation are Ontario Ministry of the Environment (MOE) licensed Water Well Contractors. Standard penetration testing and sampling were carried out at regular intervals of depth in the boreholes using conventional 35 mm internal diameter split spoon sampling equipment. The shallow groundwater conditions were noted in the open boreholes during drilling. Eleven 50 mm diameter monitoring wells were installed in selected boreholes to allow for further monitoring of the groundwater levels. The remaining boreholes were backfilled and sealed upon completion of drilling. All of the soil samples obtained during this investigation were brought to our Whitby laboratory for further examination and natural water content testing and selective classification testing.

The field work for this investigation was monitored by a member of our engineering staff who also determined the approximate borehole locations in the field, logged the boreholes and cared for the recovered samples. The ground surface gauge elevations were surveyed by Rady-Pentek & Edward Surveying Ltd., and the survey coordinates were provided to Golder. It is understood that the elevations were surveyed relative to a geodetic benchmark. The surveyed elevations are shown on the Record of Borehole sheets, attached.

5.0 SITE GEOLOGY AND STRATIGRAPHY

5.1 Regional Geology

The Site is located within the Southern Ontario region known as the South Slope but near the border with the Oak Ridges Moraine (*The Physiography of Southern Ontario*, Chapman and Putnam, 1984) as shown on Figure 1a.

The South Slope region slopes gradually downward towards Lake Ontario. The overburden immediately below ground surface within the South Slope generally consists of clayey silt till and silty clay till. The physiographic mapping in the general vicinity of the Site indicates a drumlinized till plain.

5.2 Subsurface Conditions

The subsurface soil and shallow groundwater conditions encountered in the boreholes, as well as a part of results of the field and laboratory testing, are shown in detail on the Record of Borehole, following the text of this report. Method of Soil Classification and Symbols and Terms Used on Records of Boreholes and Test Pits are provided

to assist in the interpretation of the borehole logs. It should be noted that the boundaries between the strata have been inferred from drilling observations and non-continuous samples. They generally represent a transition from one soil type to another and should not be inferred to represent an exact plane of geological change. Further, conditions will vary between and beyond the boreholes. The following is a summarized account of the subsurface conditions encountered in the boreholes drilled during this preliminary investigation, followed by more detailed descriptions of the major soil strata and shallow groundwater conditions.

Underlying 0.10 m to 0.46 m of topsoil, the native deposits encountered mainly consisted of surficial deposits of clayey silt, sandy silt and silt underlain by a major strata of glacial till. The till ranged in gradation from clayey silt till to sand and silt till. Minor deposits of clayey silt, sandy silt, silty sand and sand were also locally encountered at depth.

5.2.1 Topsoil

Topsoil was encountered at ground surface in all of the boreholes. The thickness of the topsoil encountered in the boreholes ranged from 0.10 m to 0.46 m.

5.2.2 Clayey Silt

Surficial deposits of clayey silt were encountered in Boreholes 12-3 through 12-6. Standard penetration testing carried out within the clayey silt gave N values ranging from 6 to 14 blows per 0.3 m penetration, indicating a firm to stiff consistency. The natural water contents of the clayey silt samples ranged from about 12 to 25 percent.

5.2.3 Sandy Silt and Silt

Surficial deposits of sandy silt and silt were encountered in Boreholes 17-7 through 17-19. Standard penetration testing carried out within the sandy silt and silt gave N values ranging from 7 to 20 blows per 0.3 m penetration, indicating a loose to compact state of compactness. The natural water contents of the sandy silt and silt samples ranged from about 5 to 18 percent.

5.2.4 Glacial Till

A predominant deposit of glacial till was encountered in all the boreholes drilled at the Site. The till ranged from non-cohesive sandy silt till to slightly cohesive clayey silt till, sand and silt till.

Standard penetration testing carried out within the predominantly slightly cohesive till gave N values ranging widely from 6 to greater than 100 blows per 0.3 m penetration, indicating a firm to hard consistency. The natural water contents of the cohesive till samples ranged from about 5 to 20 percent. Five grain size distribution curves for the slightly cohesive sand and silt till are shown on Figure 3. Five Atterberg limit testing results are shown on the Plasticity Chart, Figure 4, indicating that the slightly cohesive till can be classified as a ML-CL soil type under the Unified Soil Classification System.

Standard penetration testing carried out within the non-cohesive till gave N values ranging from 69 to greater than 100 blows per 0.3 m penetration, indicating a very dense compactness. The natural water contents of the non-cohesive till samples ranged from about 7 to 11 percent.

5.2.5 Silty Sand and Sandy Silt

Deposits of silty sand and sandy silt were encountered in Boreholes 12-1 and 12-4. Standard penetration testing carried out within the silty sand/sandy silt gave N values of greater than 100 blows per 0.3 m penetration, indicating a very dense compactness. The natural water contents of the silty sand and sandy silt samples were about 13 and 15 percent.

5.2.6 Sand

A deposit of sand was encountered in Boreholes 12-3 and 12-6. Borehole 12-6 was terminated in the sand. Standard penetration testing carried out within the sand gave N values of 56 blows and greater than 100 blows per 0.3 m penetration, indicating a very dense compactness. The natural water contents of the sand samples were about 15 and 20 percent. Our field observations and the relatively high natural water contents indicate that the sand is likely saturated and potentially water bearing.

5.2.7 Groundwater

The groundwater conditions encountered in each of the boreholes are shown in detail on the Record of Borehole sheets, following the text of this report.

Groundwater measurements are summarized in Table B1, Appendix B. Groundwater levels were measured in the available monitoring wells in March 2012, April 2012, October 2017, November 2017 and January 2018. Over this period groundwater was measured in these monitoring wells at depths ranging from 0.42 mbgs to 7.61 mbgs and from elevations of 261.11 masl to 273.86 masl.

It should be noted that groundwater observations reflect the groundwater conditions encountered in the boreholes and the piezometers during the time of the field investigation. Groundwater levels at the Site are anticipated to fluctuate normally with seasonal variations in precipitation. A preliminary hydrogeological assessment addressing broader hydrogeological issues for the Site was carried out by Golder and the results are presented in our report entitled:

"Preliminary Hydrogeological Investigation, Proposed Residential Subdivision, 5113 Old Brock Road, Claremont, City of Pickering, Ontario" dated July 2021.

6.0 DISCUSSION

This section of the report provides preliminary geotechnical information based on our interpretation of the borehole data and on our understanding of the project requirements being subject to the limitations given in Appendix A. The information in this portion of the report is provided in respect of the draft plan submission and may not be sufficient for final design or construction purposes. Where comments are made on construction, they are provided only in order to highlight aspects of construction which could affect the design of the project. Contractors bidding on or undertaking any work at the Site should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, equipment capabilities, costs, sequencing and the like.

Our professional services for this assignment address only the geotechnical (physical) aspects of the subsurface conditions at this Site as outlined above. The geo-environmental (chemical) aspects are outside of the terms of reference for this report but are presented under separate cover.

6.1 Preliminary Geotechnical Information

Based on the results of this investigation, the subsurface soil conditions encountered at the Site are generally considered to be suitable for the proposed development. The following preliminary geotechnical recommendations are provided for the planning and preliminary design of underground services, pavements, stormwater management ponds (SWM ponds) and building foundations at the Site.

6.1.1 Site Grading

Topsoil must be stripped off from the proposed development area. It may be reused for landscape purposes.

It is understood that the general site grading may result in cuts of up to 2.6 m and filling up to 1.5 m across the Site. The subsurface soils encountered in the boreholes are generally not considered to be compressible. As such, no long-term consolidation is anticipated as a result of the proposed site grading.

6.1.2 House Foundations

In general, the native subsoils at the Site are considered to be suitable for supporting conventional residential house (with or without basements) foundations for the proposed development. The reworked clayey silt till found in Borehole 12-5 and other locally softer materials will require removal prior to construction of the foundations. Localised removal in the order of 0.6 m is anticipated. A preliminary allowable bearing pressure in the order of 100 kPa to 150 kPa may be assumed for conventional shallow spread and/or strip footings bearing in the native, undisturbed, competent subsoils.

Engineered fill could also be used to support houses at the Site. Footings founded on approved engineered fill may be designed using a preliminary allowable bearing pressure of 100 kPa to 150 kPa. All exterior footings and footings in unheated areas must be protected with a minimum of 1.4 m of earth cover or equivalent insulation for frost protection.

The recommended type of foundation drainage system required (perimeter drains and/or underfloor drains; damp-proofing or water-proofing) depends upon the proposed basement founding elevations, soil types in the area and actual stabilized groundwater levels. Based on the results of this preliminary investigation, it is anticipated that conventional foundation drainage (i.e. perimeter drains and damp-proofing) would be adequate for basements founded at least 1 m above the prevailing groundwater tables. More extensive foundation drainage measures (underfloor drains and/or water-proofing) may be necessary where basements are proposed to be founded in the wet sands (as in the vicinity of Borehole 12-3). Further investigation during detailed design stage will be needed to determine the extent of the identified wet sandy deposits and the required foundation drainage measures.

6.1.3 Storm Sewers

We understand that most of the storm sewer inverts will be constructed at a nominal depth of approximately 3.5 m below the final grade. However, a relatively deep storm sewer (up to about 10 m in depth) is required in the southeast portion of the Site. We note that deeper boreholes will be required to further investigate the subsurface soil and groundwater conditions for the deeper storm sewer section.

It is anticipated that the trench excavations for underground servicing no deeper than 6 m below the ground surface would consist of conventional temporary open cuts with side slopes not steeper than 1 horizontal to 1 vertical. However, local flattening of side slopes may be required in looser zones in some areas or where significant water seepage is encountered. It is expected that groundwater control during excavation within the stiff to hard clayey silt and glacial tills can be provided, as required, by pumping from sumps within the trench

excavations. However, for excavations extending to the deeper sand deposits (vicinity of Boreholes 12-1 and 12-3), more extensive / active groundwater control measures will likely be required depending on the extent and thickness of this non-cohesive water bearing sand deposit. Once the final design details are available a further assessment of the need for either a Permit to Take Water (PTTW) or an Environmental Activity and Sector Registry (EASR) can be completed for the Site.

Conventional bedding thicknesses are anticipated for underground services founded within the native competent subsoils at the Site. Additional bedding thicknesses may be required for services founded in wet till-like clayey silt soils, depending upon the excavation depths and success of the contractor's groundwater control measures.

The majority of the native subsoils except for the reworked clayey silt till are generally near or above (but not excessively so) their estimated optimum water contents for compaction and will be suitable for reuse as trench backfill provided that the water contents are maintained at the time of construction. Any excavated materials that are significantly above their optimum water contents (more than about 4 percent) would likely require some drying in the field prior to placement.

6.1.4 Flexible Pavements

Based on the subsoil conditions encountered, conventional asphaltic (flexible) pavement designs, in accordance with the City of Pickering Series 700 drawings for residential streets, are considered to be appropriate for the proposed residential roads at the Site. For preliminary planning purposes, the pavement structure shown in the following table may be considered:

	Material	Thickness of Pavement Elements (mm)		
	Material	Local Residential Streets		
Asphaltic Material	HL 3 Surface Course	35		
(OPSS 1150)	HL 8 Binder Course	50		
Granular Material	Granular A Base or 19 mm Crusher Run Limestone	150		
(OPSS 1010)	Granular B Type I Subbase or 50 mm Crusher Run Limestone	300		
Prepared and Approved Subgrade				

6.1.5 Storm Water Management Ponds

The West SWM Pond (Block 73) will be constructed in the vicinity of Boreholes 17-8 and 17-11. The bottom elevation of the West pond will be at 267.35 m (approximately 0.5 to 1.8 m below the ground surface). The groundwater level in the piezometer installed at Borehole 17-8 is approximately 2.0 m below the level of the pond bottom. The groundwater level in the piezometer installed at Borehole 17-11 is approximately 5.3 m below the level of the pond bottom.

The South SWM Pond (Block 74) will be constructed in the vicinity of Boreholes 17-18 and 17-19. The bottom elevation of the South pond will be at 262.0 m (approximately 6.5 to 8.5 m below the existing ground surface). The groundwater levels in the piezometers installed at Boreholes 17-18 and 17-19 were measured at up to about 7.5 and 6.8 m above the level of the pond bottom respectively.

Preliminary permanent side slopes of 3H:1V are possible above the pond high water level and 4H:1V below the pond high water level. It is anticipated that both ponds will be completed in the predominate silt and sand to silty sand or silt and sand to silty clay glacial tills, however additional boreholes to depths of about 6 m below the proposed pond base elevations will be required at the detailed design stage to confirm the soil and groundwater conditions at both pond locations. An assessment of the need for a pond liner will be completed at that time.

7.0 CLOSURE

In general, the soil conditions encountered are generally suitable for the proposed residential development. As previously indicated, the preliminary geotechnical recommendations provided in this report are not sufficient for final design purposes. Once the development plans are further developed, the information in this report should be reviewed by Golder and additional investigative work carried out, compatible with the detailed development plans for the Site.

We trust that this report meets your current requirements. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact this office.

Signature Page

Yours truly,

Golder Associates Ltd.

A. J. HAGNER

Jul. 26, 2021

Andrew J. Hagner, P.Eng

Associate, Senior Geotechnical Engineer

Steven D. Keenan, C.E.T.

Principal

AJH/CLK/SDK/sv/af

Golder and the G logo are trademarks of Golder Associates Corporation

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

METHOD OF SOIL CLASSIFICATION

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Си	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$\frac{(30)^2}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name					
		of is nm)	Gravels with \$\(200\) \(200\	Poorly Graded		<4		≤1 or ≥	≥3		GP	GRAVEL					
(ss	, 5 mm)	GRAVELS 0% by mass refraction tran 4.75 r		Well Graded		≥4		1 to 3	3		GW	GRAVEL					
by ma	SOILS an 0.07	GRA' 50% by parse fr er thar	Gravels with >12%	Below A Line			n/a				GM	SILTY GRAVEL					
3ANIC t≤30%	AINED rger th	(> cc	fines (by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL					
INORC	SE-GR ss is la	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or 3	≥3	330 /6	SP	SAND					
INORGANIC (Organic Content ≤30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND					
Ō	%09<)	SAN 50% by parse fi ller tha	Sands with >12%	Below A Line			n/a				SM	SILTY SAND					
		≤) α sma	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND					
Organic							Field Indica	ators									
or Inorganic	Group Type of Soil		Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name						
	FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)	<u>to</u>	pe e e .	Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT					
(ss		300		Line Line city (w) (oct of the color)	i i	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT				
by ma	OILS Ian 0.0	SILTS n-Plastic or Pl below A-I on Plasti Chart be			Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT					
INORGANIC	FINE-GRAINED SOILS mass is smaller than 0.		n-Plast be or	n-Plast be or Ch	n-Plast be or Ch	n-Plast be or Ch	n-Plast be or Ch	n-Plas be	o CI	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН
INORG	-GRAII	Š	N)	≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT					
INORGANIC (Organic Content ≤30% by mass)	FINE	CLAYS and LL plot	above A-Line on Plasticity Chart below)	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY					
<u>Ö</u>	≥50% !			Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY					
			above Plast	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY					
ANIC LS LS	anic >30% ass)		mineral soil dures							30% to 75%		SILTY PEAT, SANDY PEAT					
HIGHLY ORGANIC SOILS	Content by ma	Predominantly peat, may contain some mineral soil, fibrous or amorphous peat					_			75% to 100%	PT	PEAT					
Adual symbol — A dual symbol is two symbols separated by																	

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT.

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND Coarse SAND Medium Fine		2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier		
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL)		
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable		
> 5 to 12	some		
≤ 5	trace		

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_i), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

рΗ٠ Sampler advanced by hydraulic pressure Sampler advanced by manual pressure РМ-WH-Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

NON-COHESIVE (COHESIONLESS) SOILS

Compactness ²				
Term	SPT 'N' (blows/0.3m) ¹			
Very Loose	0 - 4			
Loose	4 to 10			
Compact	10 to 30			
Dense	30 to 50			
Very Dense	>50			
1 CDT 'N' in accordance with ACTM D1596, uncorrected for everburder				

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure
- Definition of compactness terms are based on SPT-'N' ranges as provided in Terzaghi, Peck and Mesri (1996) and correspond to typical average N_{60} values. Many factors affect the recorded SPT-'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), groundwater conditions, and grainsize. As such, the recorded SPT-'N' value(s) should be considered only an approximate guide to the compactness term. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description		
Dry Soil flows freely through fingers.			
Moist	Soils are darker than in the dry condition and may feel cool.		
Wet	As moist, but with free water forming on hands when handled.		

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
FS	Foil sample
GS	Grab Sample
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open – note size
TP	Thin-walled, piston – note size
WS	Wash sample

SOIL TESTS

SUIL TESTS	
w	water content
PL , w_p	plastic limit
LL , W _L	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
M	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

COHESIVE SOILS Consistency

Consistency					
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)			
Very Soft	<12	0 to 2			
Soft	12 to 25	2 to 4			
Firm	25 to 50	4 to 8			
Stiff	50 to 100	8 to 15			
Very Stiff	100 to 200	15 to 30			
Hard	>200	>30			

- SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure
- effects; approximate only. SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description	
w < PL	Material is estimated to be drier than the Plastic Limit.	
w ~ PL	Material is estimated to be close to the Plastic Limit.	
w > PL	Material is estimated to be wetter than the Plastic Limit.	

Unless otherwise stated, the symbols employed in the report are as follows:

l.	GENERAL	(a)	Index Properties (continued)			
_	3.1416	w w _i or LL	water content liquid limit			
π In x	natural logarithm of x	w _p or PL	plastic limit			
log ₁₀	x or log x, logarithm of x to base 10	l _p or PI	plastic in the plasticity index = $(w_l - w_p)$			
	acceleration due to gravity	Ws	shrinkage limit			
g t	time	I _L	liquidity index = $(w - w_p) / I_p$			
•		lc	consistency index = $(w_1 - w_1) / I_p$			
		e _{max}	void ratio in loosest state			
		e min	void ratio in densest state			
		l _D	density index = $(e_{max} - e) / (e_{max} - e_{min})$			
II.	STRESS AND STRAIN		(formerly relative density)			
γ	shear strain	(b)	Hydraulic Properties			
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential			
3	linear strain	q	rate of flow			
ϵ_{V}	volumetric strain	V	velocity of flow			
η	coefficient of viscosity	i	hydraulic gradient			
υ	Poisson's ratio	k	hydraulic conductivity			
σ	total stress		(coefficient of permeability)			
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume			
σ'_{vo}	initial effective overburden stress					
σ1, σ2, σ3	principal stress (major, intermediate,					
	minor)	(c)	Consolidation (one-dimensional)			
		Cc	compression index			
⊙ oct	mean stress or octahedral stress	0	(normally consolidated range)			
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_{r}	recompression index			
τ	shear stress	0	(over-consolidated range)			
u E	porewater pressure modulus of deformation	Cs Cα	swelling index			
G	shear modulus of deformation	Cα m _V	secondary compression index coefficient of volume change			
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)			
		Ch	coefficient of consolidation (horizontal direction)			
		T_v	time factor (vertical direction)			
III.	SOIL PROPERTIES	U	degree of consolidation			
		σ'_{p}	pre-consolidation stress			
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCR	over-consolidation ratio = σ'_p / σ'_{vo}			
$\rho_d(\gamma_d)$	dry density (dry unit weight)	(d)	Shear Strength			
ρω(γω)	density (unit weight) of water	τ_p , τ_r	peak and residual shear strength			
$ ho_{s}(\gamma_{s})$	density (unit weight) of solid particles	φ′ δ	effective angle of internal friction			
γ'	unit weight of submerged soil	0	angle of interface friction			
_	$(\gamma' = \gamma - \gamma_{w})$	μ	coefficient of friction = $\tan \delta$			
D_R	relative density (specific gravity) of solid	C'	effective cohesion			
	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	C_u , S_u	undrained shear strength ($\phi = 0$ analysis)			
e	void ratio	р ′	mean total stress $(\sigma_1 + \sigma_3)/2$			
n e	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$			
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$			
		qu St	compressive strength (σ_1 - σ_3) sensitivity			
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$			
	$\rho = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2			
	acceleration due to gravity)					

RECORD OF BOREHOLE: BH12-1

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: February 23, 2012

	<u>С</u>	SOIL PROFILE			SA	MPLE	s	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	- (
DEPIH SCALE METRES	BORING METHOD		Ы				- 1	20 40 60 80	k, cm/s 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
ETR	₩ 1G	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m		WATER CONTENT PERCENT	니타	STANDPIPE
_ P ∑	ORIN	DESCRIF HON	RAT,	DEPTH (m)	NUM		ŏ.	SHEAR STRENGTH $\operatorname{nat} V. + Q - \bullet$ $\operatorname{rem} V. \oplus U - \bigcirc$	Wp I → W I WI	API.	INSTALLATION
	ă		ST	(m)			ā	20 40 60 80	10 20 30 40	1	
0		GROUND SURFACE	 	268.79			4			1	
		TOPSOIL		268.49		50					
		(ML) CLAYEY SILT and SAND, trace gravel, zones of fine to medium sand;		0.30	1	50 DO	9				
		brown to grey, (TILL); W~PL, stiff to									
		hard.				50					
1					2	50 DO	13			MH	
					3	50 DO	27				
2											
						50					
					4	50 DO	28				
3				1							
	IGER IS				5	50 DO	70				
	POWER AUGER										
	Powf			1							
4	ACK MOUNTED POWER AUG 150 mm Dia. Solid Stem Augers			1							
	TRACK MOUNTED 150 mm Dia. Solid										
	ACK N										
	TR/										
					6	50 DO	47				
5											
				200000							∇
		(ML) sandy SILT, trace gravel; brown, (TILL); non-cohesive, moist, very dense.		263.30							$\bar{\Delta}$
		(TILL); non-cohesive, moist, very dense.									
6											
					7	50 DO	50/ .1				
				262.24							
		(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, very dense.		6.55							
		sonsons, not, fory dollar.		1							
7											
]							
				260.92	8	50 DO	50/ .13				
8		END OF BOREHOLE		7.87		ΙŢ					Water encountered
											during drilling at a de of 1.5 m below grour surface, Feb. 23/12
											Water level in open portion of borehole a depth of 3.0 m below
9											ground surface upon
3											completion of drilling Feb. 23/12
											Borehole caved to a
											depth of 5.5 m below ground surface upon
											completion of drilling Feb. 23/12
10											
DE	PTH S	CALE				í		COLDED		1	.OGGED: DW
1:						ļ	╮	GOLDER			HECKED: AJH

RECORD OF BOREHOLE: BH12-2

SHEET 1 OF 2 DATUM: Geodetic BORING DATE: February 23, 2012

ا ب	뤗	SOIL PROFILE	_		SA	AMPLI	ES	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ودٍ ⊺	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV DEPT (m)	ᇤ	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	10 ⁸ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE TOPSOIL	EEE	269.	.61						
				269.	.15	50 DO	6				∇
		(ML) CLAYEY SILT and SAND, trace gravel; brown, (TILL); W~PL, stiff to hard.			.46						
1					2	50 DO	10		0		
					3	50 DO	21				
2						-					
						50					
					4	50 DO	36		0		Bentonite Seal
3						$\mid \mid$					
	ers				5	50 DO	62				
	WER All	(010)		265.							
4	Hollow S	(SM) sandy SILT, trace gravel; brown to grey, (TILL); moist, very dense.	4 4 4 4	3.	.81						
	TRACK MOUNTED POWER AUGER 200 mm Dia. Hollow Stem Augers		4 4 4								
	200				6	50 DO	69				
5											
		(ML) CLAYEY SILT, trace sand; grey; moist, hard.		264. 5.	.33						2
6						<u> </u>					
					7	50 DO	44		0		
		(ML) CLAYEY SILT and SAND, trace		262.	.75						Silica Sand Filter
7		gravel; grey, (TILL); W <pl, hard.<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
					8	50 DO	73		0	МН	Water encountered during drilling at a de of 5.2 m below groun surface, Feb. 23/12
8	\perp	END OF BOREHOLE	27/4	261. 8.	.08						
9											Water level in open borehole at a depth of 7.3 m below ground surface upon completion of drilling Feb. 23/12
											Water level in monitoring well measured at a depth 0.93 m below ground surface, Mar. 5/12
10		 	_	ļ.,	_ _		_			_	Water level in
		CONTINUED NEXT PAGE									

RECORD OF BOREHOLE: BH12-2

SHEET 2 OF 2

DATUM: Geodetic

LOCATION: SEE FIGURE 2

BORING DATE: February 23, 2012

		T HAMMER: MASS, 64kg; DROP, 760mm			C A I	MDIF		DYNAMIC PENETRATION	<u> </u>	HYDRAULIC CONDUCTIVITY.	-	
SCALE RES	METHOL	SOIL PROFILE	LOT			MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	80	HYDRAULIC CONDUCTIVITY, k, cm/s		PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH nat V		wb O	wı Ağ	STANDPIPE INSTALLATION
		CONTINUED FROM PREVIOUS PAGE	0)					20 40 60	80	10 20 30	10	1
- 10 -												monitoring well measured at a depth 0.42 m below ground surface or at an elevation of 269.19 n above sea level, Jan. 23/18
12												
· 13												
14												
15												
16												
17												
18												
19												
20												

RECORD OF BOREHOLE: BH12-3

BORING DATE: February 23, 2012

SHEET 1 OF 1

DATUM: Geodetic

\Box	2	SOIL PROFILE			SAN	MPLE:	s I	NAMIC PENETRATION SISTANCE, BLOWS/0.3m	\	HYDRA	ULIC CON	NDUCTIVITY,	, т		
METRES	BORING METHOD					_	- 1		,	10	K, cm/s	10-4	10-3	ADDITIONAL LAB. TESTING	PIEZOMETER
耀	3 ME		STRATA PLOT	ELEV.	NUMBER	ш	BLOWS/U.3m		30	i	i_	10 ⁻⁴	10 ⁻³	TION	OR STANDPIPE
₹	SING SING	DESCRIPTION	ΑTΑ	DEPTH	JMB	TYPE	8 8	IEAR STRENGTH nat V. + , kPa rem V. ⊕	U- ○	1		TENT PERC			INSTALLATION
i	BOR		STR/	(m)	ž	.] E	20 40 60 8	30	Wp 10		30	- I WI 40	4 3	
		GROUND SURFACE		270.16			1	20 40 00 8	1	1 1	20	30	40		
0		TOPSOIL	EEE	0.00	1A		T								
		(ML) CLAYEY SILT, some sand, trace	EEE	269.88 0.28		50 DO	14					0			
		gravel; brown; W>PL, stiff.		1	1A										
				1											
				1	2	50 DO	9								
1				1		DO	"								
				268.79											
		(ML) CLAYEY SILT and SAND, trace gravel; brown, (TILL); W>PL, very stiff to		1.37											
		hard.			3	50 DO 2	20				0				
2				1											
-				1											
				1	Н										
				1	4	50 DO	14			9					
				267.26	H										Δ
3		(SW) SAND, fine to medium, trace	1 iw	2.90											-
		gravel; brown; wet, very dense.			5	50 DO 5	56								
	JGER					DO	~				۲				
	Auge														
	TRACK MOUNTED POWER AUGER 150 mm Dia. Solid Stem Augers	(ML) sandy SILT. trace to some gravel:		266.35 3.81											
4	NED F	(ML) sandy SILT, trace to some gravel; grey, (TILL); cohesive, moist, very dense													
	DIA. 9			1											
	X E		4												
	TRAC 150				6	50 5 DO .	0/ 15								
			4												
5															
				·											
			4												
6				1											
6				1	7	50 5 DO .	0/								
						٠ اس	13								
				1											
7															
				1											
					Ш										
					8	50 DO	i0/ .1								
8				262.08	Ы	200	. '			1					Water encountered
		END OF BOREHOLE		8.08			1								during drilling at a d of 2.9 m below grou
															surface, Feb. 23/12
															Water level in open portion of borehole a
															depth of 2.4 m below
9															ground surface upor completion of drilling Feb. 23/12
															Borehole caved to a depth of 2.9 m below
															ground surface upor
															completion of drilling Feb. 23/12
10															
\perp															
DEF	PTH S	SCALE				í	Ņ	COLDE!	D					L	OGGED: DW
	50					Į	~}	GOLDE	K						ECKED: AJH

RECORD OF BOREHOLE: BH12-4

> DATUM: Geodetic BORING DATE: February 23, 2012

HAMMER TYPE: AUTOMATIC

SHEET 1 OF 2

щ	Φ	SOIL PROFILE			SAM	PLES	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ی∟ ا⊺	DIE 701 :====
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q Cu, kPa rem V. ⊕ U	`\ 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
)	BOI		STR	(m)	z	BLC	20 40 60 80	10 20 30 40		
0		GROUND SURFACE		272.19	_					-
		TOPSOIL		0.00	1A					
				271.73	5	i0 14				
		(ML) CLAYEY SILT, trace to some sand, trace gravel; brown; W>PL, firm.		0.46	1B					
						in _				
1					2 5	7				
		(ML) OLAVENOUT LOAND		270.82						
		(ML) CLAYEY SILT and SAND, some gravel; brown, (TILL); W>PL, stiff to hard.		1.37	-					
				1	3 5	iO 13				
2				}	\dashv					abla
				1	\perp					<u>.</u>
					4 5	i0 39		0		
					\dashv					Bentonite Seal
3										
	띪				5 5	iO 100				
	TRACK MOUNTED POWER AUGER 150 mm Dia. Solid Stem Augers									
	POWER AUG Stem Augers									
,	ED P(1						
4	OUNT Dia. S			1						
	ACK MOUNTED I									
	TRA 15			 	\dashv					
					6 5	60 50/ 10 .15				
5]	\dashv					
				1						
										ē.
6						50 F0'				
] F	7 6	50/ 1O .13				
				265.33						
7		(ML) SILT and SAND, trace gravel; brown; non-cohesive, wet, very dense.	191	6.86						Silica Sand Filter
		biowii, non-conesive, wet, very defise.								8
					8 5	50 50/ 1O .1			МН	
8	\Box	END OF BOREHOLE		264.32 7.87	<u>_</u> [0 .1			INIT	Motor ongt
o										Water encountered during drilling at a de of 1.5 m below grour surface, Feb. 23/12
										Water level in open
										borehole at a depth of 1.8 m below ground
9										surface upon completion of drilling Feb. 23/12
										Water level in monitoring well at a depth of 4.92 m below
										ground surface, Mar. 5/12
10				 	-+	-	<u></u>	-+		
		CONTINUED NEXT PAGE								
DE	PTH ©	CALE							1.	OGGED: DW
שט	3	O, 1.L.				Ď	GOLDER		L	JUGLD. DW

RECORD OF BOREHOLE: BH12-4

SHEET 2 OF 2

DATUM: Geodetic

LOCATION: SEE FIGURE 2

BORING DATE: February 23, 2012

آ بى	ОО	SOIL PROFILE			SA	MPL	ES	DYNAMIC RESISTAN	PENETRAT	ION S/0.3m	1	HYDRAU k,	LIC CON	IDUCTIV	/ITY,	T	ιO	
DEPTH SCALE METRES	BORING METHOD		Ю.		~		33	20	40		30	10-6		10 ⁻⁴	10 ⁻³	1	LAB. TESTING	PIEZOMETER OR
ETR	N S	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR ST		nat V. +	Q - •				ERCENT	— <u> </u>		STANDPIPE INSTALLATION
DE P	ORII	5255.W 11014	.RAT	DEPTH (m)	NUN		ΓΟW	Cu, kPa		rem V. ⊕	U- O						LAB	INGTALLATION
	В		ST	(111)		Ш	ā	20	40	60 8	30	10	20	30	40			
10		CONTINUED FROM PREVIOUS PAGE																Water level in
																		monitoring well
																		monitoring well measured at a depth 2.17 m below ground
																		surface or at an elevation of 270.02 n
																		above sea level.
- 11																		Jan. 23/18
12																		
-																		
13																		
14																		
15																		
16																		
17																		
18																		
19																		
20																		
		<u> </u>	1	1		ш				-	1							
DEF	PTH S	CALE						G	01) F I	R						L	OGGED: DW
DEI		CALE						G	OL	DEI	R							OGGED: DW ECKED: AJH

RECORD OF BOREHOLE: BH12-5

SHEET 1 OF 1

LOCATION: SEE FIGURE 2 BORING DATE: February 23, 2012 DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

	$\overline{}$	SOIL PROFILE			SAM	PLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3	m	HYDRAULIC CONDUCTIVITY, k, cm/s	_	PIEZOMETER
DEPTH SCALE METRES BORING METHOD	ONING ME	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	LYPE BLOWS/0.3m	20 40 60 SHEAR STRENGTH nati Cu, kPa rem	80 V. + Q - ● IV. ⊕ U - ○	10° 10° 10° 10° 10° 10° WATER CONTENT PERCENT Wp W W W W W W W W W	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	+	GROUND SURFACE	S	271.49		a a	20 40 60	80	10 20 30 40		
- 1		TOPSOIL (ML) CLAYEY SILT, trace to some sand; dark brown, organic stained, (REWORKED TILL); W>PL, firm. (ML) CLAYEY SILT and SAND, trace gravel; brown to grey, (TILL); W-PL, very stiff.		0.00 271.24 0.25 270.86 0.6	1 1A 5 1B 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50 6 50 14					
. 2						50 17			0		
A TRACK MOUNTED POWER AUGER	150 mm Dia. Solid Stem Augers					500 18					
. 5		(ML) CLAYEY SILT, some sand, trace gravel; grey, (TILL-LIKE); W>PL, stiff.		266.16 5.30	6 8	500 29			0		
. 7		(ML) CLAYEY SILT and SAND, trace gravel, grey, (TILL); W~PL, hard.		264.63 6.86	3	500 12					Ā
- 8		END OF BOREHOLE		263.4 ² 8.08		50 61			0		Water encountered during drilling at a dep of 7.3 m below ground surface, Feb. 23/12 Water level in open borehole at a depth of 7.3 m below ground surface upon completion of drilling, Feb. 23/12
DEPTH	H SC	CALE					GOLD	E R			OGGED: DW

RECORD OF BOREHOLE: BH12-6

BORING DATE: February 23, 2012

SHEET 1 OF 2

DATUM: Geodetic

į	OC .	SOIL PROFILE			SAM	PLES	DYNAMIC PENETRA RESISTANCE, BLOV	TION	`	HYDRAULIC C k, cm/s	ONDUCTIVITY	• Т		
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	60	B0 - Q- ● - U- ○	10 ⁻⁶ 1	0 ⁵ 10 ⁴ L ONTENT PERC	10 ³ EENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	В		STE	(m)	_	B	20 40	60	80		20 30	40		
0		GROUND SURFACE TOPSOIL	EEE	267.03 0.00										
					1A									
		(ML) CLAYEY SILT, trace to some sand, trace gravel; brown; W~PL, stiff.		266.57 0.46	1B 5	0 10					0			
		trace gravel; brown; W~PL, stiff.		Ī										
1					2 5 D	8 0				0				
		(ML) CLAYEY SILT and SAND, trace		265.66 1.37										
		gravel; brown, (TILL); W>PL, very stiff to hard.			2 5	0 000								
					3 5 D	0 22				0				
2														
				-	1									
					4 5 D	0 O 25				0				
					\dashv									
3					\dashv									
					5 5 D	0 0 55								
				-										
														Bentonite Seal
4		(ML) sandy SILT, trace gravel; brown to		263.07 3.96										
	TRACK MOUNTED POWER AUGER 200 mm Dia. Hollow Stem Augers	grey, (TILL); cohesive, moist, very dense.												
	/ER Al		4											
	POW w Ste		4	-	6 5	0 50/ O .1								
_	NTED Hollo		4 4	-	٦	0 .1								
5	MOU m Dia		4 4											
	RACK 200 m													
	-		4											
			4 4											$\bar{\Delta}$
6			4	-										
			A 4		7 D	0 50/ O .1								
			Q 4											
7			₽											
														<u>-</u>
					8 5	0 50/ O .13								Ĭ
8						.13								
-														j ŝ
			4 4	258.50										
		(SW) SILTY SAND, fine to medium; grey; wet, very dense.		8.53										
		wos, voly dolloc.												Silica Sand Filter
9					_									
					9 5	0 50/ O .13							МН	
		END OF BOREHOLE		257.43 9.60		1.13								
		LIND OF BUNEFIULE		5.00										Water encountered during drilling at a de
10		CONTINUED NEVT BACE	1-1		-+	-	-	+	<u> </u>			+		⁻ ⁻
		CONTINUED NEXT PAGE												
DE						_	GOL							

RECORD OF BOREHOLE: BH12-6

SHEET 2 OF 2

LOCATION: SEE FIGURE 2 BORING DATE: February 23, 2012

DATUM: Geodetic

	0	SOIL PROFILE			Q A B	//PLE	- 1	DYNAMIC PENETRA	ATION	\	HYDRAULIC	CONDUCTI	VITY, -		
DEPTH SCALE METRES	BORING METHOD	JOIL PROFILE	ь			_		DYNAMIC PENETRA RESISTANCE, BLOW 20 40		80	HYDRAULIC k, cm/	s 10 ⁻⁵ 10 ⁻		ADDITIONAL LAB. TESTING	PIEZOMETER OR
ETRE	G ME	DESCRIPTION	A PL(ELEV.	BER	Ш	8/0.3	SHEAR STRENGTH		1		CONTENT F		⊣ ₹	STANDPIPE
J F	ORIN	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.3m	Cu, kPa	rem V. €	0 - Ŏ	Wp I	OOM DW	WI	APE.	INSTALLATION
-	BC		STI	(m)		\perp	B	20 40	60	80	10	20 30		<u> </u>	
10		CONTINUED FROM PREVIOUS PAGE				1				1				_	of 5.2 m below group
															of 5.2 m below groun surface, Feb. 23/12
															Water level in open
															borehole at a depth o 7.3 m below ground
														1	surface upon
11															completion of drilling, Feb. 23/12
															Water level in
															depth of 5.56 m below
															monitoring well at a depth of 5.56 m below ground surface, Mar. 5/12
															Water level in
12															monitoring well measured at a depth
															5.84 m below ground surface or at an
															elevation of 261.19 m
														1	above sea level, Jan. 23/18
13														1	
10															
														1	
14															
15															
16															
17															
														1	
40															
18														1	
														1	
19															
														1	
20															
DF	PTH S	CALE						GOL	D = -	_				1	OGGED: DW
ےد	0						人	⊾ GOL	υE	K				_	

RECORD OF BOREHOLE: BH17-7

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: October 05, 2017

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

FE.	HOD	SOIL PROFILE			SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	AP NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q. ● Cu, kPa rem V. ⊕ U - ○ 20 40 60 80	10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		274.95							_
		TOPSOIL (ML) sandy SILT; brown; non-cohesive, moist, compact to loose		0.00	1	ss	14				
1				273.58	2	SS	9		Φ		
2		(ML-CL) SILT and SAND, some gravel; brown, oxidation staining (TILL); cohesive, w <pl hard<="" stiff="" td="" to="" w~pl,=""><td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td>1.37</td><td>3</td><td>SS</td><td>9</td><td></td><td>0</td><td></td><td></td></pl>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.37	3	SS	9		0		
			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4	ss	30				
3			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5	ss	23		⊕	МН	Bentonite Seal
4	, ,		2 4 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4								
		- Auger grinding at 4.3 m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		6	ss	21				<u> </u>
5			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			33	21				
6		- Grey at 6.3 m	2		7	SS	33		0		
7			7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4								Silica Sand Filter and Screen
- 8					8	ss	19		0		
0		END OF BOREHOLE NOTE:	A:†4.:	. 266.87 8.08							
		Borehole dry upon completion of drilling, Oct. 5/2017.									
9		Groundwater level measured in monitoring well at a depth of 5.44 m on October. 26/2017. Water level in monitoring well.									
10		Water level in monitoring well measured at a depth of 4.66 m below ground surface or at an elevation of 270.29 m above sea level, Jan. 23/18.									
DE	PTH S	CALE						GOLDER		LC	DGGED: RV

RECORD OF BOREHOLE: BH17-8

SHEET 1 OF 2

LOCATION: SEE FIGURE 2 BORING DATE: October 05, 2017

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

Ц 	ЭH	SOIL PROFILE	1.		SAIV	1PLES	RE	SISTANCE	ENETRA E, BLOW	/S/0.3m	į,		k, cm	/s	UCTIVIT		46	PIEZOMETER
METRES	BORING METHOD		LOT		监	5	<u> </u>	20	40	60	80 `	1	0-6	10 ⁻⁵	10-4	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
MET	SING	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE BIOWS/0.3m	SH Cu	EAR STRE , kPa	ENGTH	nat V. rem V.	+ Q- ● ⊕ U- ○				NT PER		DOIT B. TE	INSTALLATION
5	BOR		STR4	(m)	ĭ	. a	3 - "	20	40				р I —— 10	20		- WI	^5	
		GROUND SURFACE	- 3,	267.86		+		20	40	60	80			20	30	40		
0		TOPSOIL		0.00	4.6	+												
				267.48	1A	SS 1	7						0					
		(ML) sandy SILT, trace gravel; brown, oxidation staining; non-cohesive, moist,		0.38	1B		·					0						
		compact																
1				266.82	2A							0						
		(ML-CL/CL) SILT and SAND to sandy SILTY CLAY, trace to some gravel;	4 2 4	1.04	2B	SS 1	5					C						Bentonite Seal
		brown, oxidation staining (TILL); cohesive, w>PL to w~PL, stiff to hard	4															
		coriesive, w>PL to w~PL, still to hard	4															
			4		3	SS 1	1							>				
2					\dashv													
																		, and a second
					4	SS 1	8					,	 					
			4															*\d
3		- Auger grinding at 2.9 m] [8
J		3 3 ·g ···	40		П] [3
					5	SS 3	1						0					ļ
			7		\dashv													[A
4																		[3
																		[A
																		[[4
			4															[
5			7,4		6	SS 4	3						'					
υ					П													
																		[3
6			4		Ш													Silica Sand Filter
			4		7	SS 3	2							,				and Screen
		- Grey and sand inclusion at 6.3 m				-	-											[3
			7 4															l S
7			4 4															
′																		
					Ш													
					8	SS 2	2						0					
8		END OF BODE 121 F	4 4	259.78		\perp												
		END OF BOREHOLE		8.08														
		NOTES:																
		1. Groundwater encountered at a depth of 4.5 m during drilling on Oct. 5 /2017.																
9		Groundwater measured in open																
9		borehole at a depth of 5.1 m upon completion of drilling on Oct. 5/2017.																
		Groundwater level measured in monitoring well at a depth of 4.09 m on																
		Oct. 26/2017.																
10		4. Water level in monitoring well			-+	- -		- +		+	-			- + -	-	- +	-	
		CONTINUED NEXT PAGE																
D.	חדיי מ	DOM F						_		_	_							00055 51
- DE	r i H S	SCALE				\		G	-		_							.OGGED: RV

RECORD OF BOREHOLE: BH17-8

SHEET 2 OF 2

LOCATION: SEE FIGURE 2 BORING DATE: October 05, 2017

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

ا بِـ	임	SOIL PROFILE			SAM	IPLES	RESI	AMIC PEN STANCE	NETRAT , BLOW	ION S/0.3m		HYDRA I	ULIC CC k, cm/s	UUUCT	IVII'Y,	Ţ	阜	PIEZOMETER
DEPIH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	SHE/		40 NGTH		80 ├ Q - ● Ŭ - ○		TER CC	NTENT	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
<u> </u>	ВОЯ		STRA	(m)	ž	- a	3		40		80	Wp 10		 W		WI 10	₹\$	
10		CONTINUED FROM PREVIOUS PAGE																
		measured at a depth of 2.60 m below ground surface or at an elevation of 265.26 m above sea level, Jan. 23/18																
11																		
12																		
13																		
14																		
15																		
16																		
17																		
18																		
19																		
20																		
DEF	PTH S	CALE						GC	L	DΕ	R							DGGED: RV ECKED: AJH

RECORD OF BOREHOLE: BH17-9

SHEET 1 OF 1

LOCATION: SEE FIGURE 2 BORING DATE: October 05, 2017 DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

SOURCE SO	ALE 3	ТНОБ	SOIL PROFILE	 -		SA	AMPL	_	DYNAMIC PENETRAT RESISTANCE, BLOW	S/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	. T Ng Ng Ng Ng Ng Ng Ng	PIEZOMETER
Second Supervices 1	DEPTH SCALE METRES	ORING MET	DESCRIPTION	RATA PLO	DEPT	H	TYPE	LOWS/0.3m			WATER CONTENT PERC	ENT SE	OR
TOPSION. ORANGE STATE S		- 40	GROUND SURFACE	S				В	20 40	60 80	10 20 30		
Omnication (L.C.) SILTs and SAND, some grows, between conditions statisting TRLS; connective, wo-PL to w-GPL, stiff to hand 2 2 as 12 connective, wo-PL to w-GPL, stiff to hand 3 as 13 as 14 as	- 0		TOPSOIL		0. 271.	00 99 1A		12			0		
Silly sand inclusion at 7 m END OF BOREHOLE NOTES: 1. Borshole dry upon completion of driming, Oct. \$20,017. 2. Gournwheler feels measured in monotoming year of driming, Oct. \$20,017. 3. Water level in monitoring well and each of 7.31 m on Oct. \$30,017. 3. Water level in monitoring well ground grade in an adexiation of ground surface or in a dexiation of ground surf			compact		271.	50							
a Silly sand inclusion at 7 m Silly sand inclusion at 7 m END OF BOREHOLE NOTES: 1. Borshole dry upon completion of office office of office office office of office office office of office of	1		brown, oxidation staining (TILL);	4 4 4 4	0.0	69 —	ss	12					
Bentonte Seil 5 35 15 6 35 15 7 SS 18 END OF BOREHOLE NOTE: 1 Browhate dry upon completion of drilling, Oct. 57017 2 Coundwater fewer immessured in cond. 30, 2015 3 Nation fewer in measured in cond. 30, 2015 2 Coundwater fewer immessured in cond. 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,				4 4 4 4									
Bertonte Sed 4 SS 11 5 SS 15 C SS 15 C SS 15 A SS 15 C SS 15				A A A A		3	ss	13					
Benforite Seal 5 SS 16 7 SS 18 - Stity sand inclusion at 7 m - Stity sand inclusion at 7 m END OF BOREHOLE NOTES: 1. Bonhole dry upon completion of drilling, Oct. 52017. 2. Commowater level measured in monitoring well are dependently and oct. 32017. 3. Water level in monitoring well are develon of 260.24 m above sea levels, 365 m below ground surface or at an elevation of 260.24 m above sea levels, 367. But and surface or at an elevation of 260.24 m above sea levels, 367. But and surface or at an elevation of 260.24 m above sea levels, 367. But and surface or at an elevation of 260.24 m above sea levels, 367. But and surface or at an elevation of 260.24 m above sea levels, 367. But and surface or at an elevation of 260.24 m above sea levels, 367. But and surface or at an elevation of 260.24 m above sea levels, 367. But and surface or at an elevation of 260.24 m above sea levels, 367. Sea Pelova Commonwer levels and surface or at an elevation of 260.24 m above sea levels, 367. Sea Pelova Commonwer levels and sea levels or 367. But a sea levels and sea levels or 367. But a sea levels and sea levels or 367. But a but a sea level and sea levels or 367. But a but a sea level and sea levels or 367. But a but a sea level and sea levels or 367. But a but a sea level and sea levels or 367. But a but a sea level and sea levels or 367. But a but a but a sea level and sea levels or 367. But a b	2			A 4 4 4									
Silica Sard Filler and Screen 7 - Silty sand inclusion at 7 m 8 S S 5 S 16 7 S S 18 8 S S 7 - Silty sand inclusion at 7 m 8 S S 5 S 16 9 A S S 5 S 18 9 A S S 7 9 A S S S 7 9 A S S S S S S S S S S S S S S S S S S				4 4 4 4		4	SS	11					
Silica Sand Filler and Screen 7 - Silly sand inclusion at 7 m 8 Silica Sand Filler and Screen 8 Silica Sand Filler and Screen 8 NOTES: 1. Borchole dry upon completion of drilling, Oct. \$2,017. 9 2. Conculvator level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 9 3. Water level in monitoring well measured at a depth of 5.9 m below ground surface or at an elevation of 260.24 m above sea level, Jan. 29.18.				A 4 4									Bentonite Seal
Silica Sand Filter and Borsen 7 SS 16 - Silty sand inclusion at 7 m - Silty sand inclusion at 7 m END OF BOREHOLE NOTES: 1. Borehole dry upon completion of drilling, local 5/2017. 9 2. Groundwater level measured in monitoring well at a depth of 7.3 m on Oct. 50/2017. 3. Water level in monitoring well at a depth of 7.3 m on Oct. 50/2017. 3. Water level in monitoring well at an elevation of 266.24 m above sea level, Jan. 23/18.	3			A 2 4 2		5	SS	15					
- Silty sand inclusion at 7 m						L	-						
Silica Sand Filler and Screen - Silty sand inclusion at 7 m	4	, .		4 4 4									
Silica Sand Filler and Screen - Silty sand inclusion at 7 m				4 4 4 A									
Silica Sand Filler and Screen - Silty sand inclusion at 7 m				4 2 4			-	40					
- Silty sand inclusion at 7 m - Silty sand inclusion at 7 m END OF BOREHOLE NOTES: 1. Borehole dry upon completion of drilling, Oct. 5/2017. 2. Groundwater level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.	5					ь	55	13					
- Silty sand inclusion at 7 m - Silty sand inclusion at 7 m END OF BOREHOLE NOTES: 1. Borehole dry upon completion of drilling, Oct. 5/2017. 2. Groundwater level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4									
- Silty sand inclusion at 7 m - Silty sand inclusion at 7 m END OF BOREHOLE NOTES: 1. Borehole dry upon completion of drilling, Oct. 5/2017. 2. Groundwater level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.				4 4 4 A									
- Silty sand inclusion at 7 m END OF BOREHOLE NOTES: 1. Borehole dry upon completion of drilling, Oct. 5/2017. 2. Groundwater level measured in monitoring well measured at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.	6			A 4 A		-							
- Silty sand inclusion at 7 m				A 4 4		_	SS	18					
8 END OF BOREHOLE NOTES: 1. Borehole dry upon completion of drilling, Oct. 5/2017. 2. Groundwater level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.	7		0.11	4 4 4									Silica Sand Filter and Screen
END OF BOREHOLE NOTES: 1. Borehole dry upon completion of drilling, Oct. 5/2017. 2. Groundwater level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.			- Silty sand inclusion at 7 m	4 4 4 4									
END OF BOREHOLE NOTES: 1. Borehole dry upon completion of drilling, Oct. 5/2017. 2. Groundwater level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.				A 4 4 4									
NOTES: 1. Borehole dry upon completion of drilling, Oct. 5/2017. 2. Groundwater level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.	8		END OF BOREHOLE	4		11	SS	57					
2. Groundwater level measured in monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.													
monitoring well at a depth of 7.31 m on Oct. 30/2017. 3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.			1. Borehole dry upon completion of drilling, Oct. 5/2017.										
3. Water level in monitoring well measured at a depth of 5.95 m below ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.	- 9		monitoring well at a depth of 7.31 m on										
ground surface or at an elevation of 266.24 m above sea level, Jan. 23/18.			Water level in monitoring well measured at a depth of 5.95 m below										
	. 10		ground surface or at an elevation of										
	10												
DEPTH SCALE GOLDER LOGGED: RV	DE	PTH S	SCALE						GOLI	DER		L	OGGED: RV

RECORD OF BOREHOLE: BH17-10

BORING DATE: October 05, 2017

DATUM: Geodetic

SHEET 1 OF 1

SF	PT/D	CP1	THAMMER: MASS, 64kg; DROP, 760mm												ŀ	HAMMER	TYPE: AUTOMATIC
щ	6	3	SOIL PROFILE			SA	MPL	.ES	DYNAMIC PERESISTANCE	NETRAT	ΓΙΟΝ S/0.3m)	HYDRAULIC k, cm	CONDUCT	TIVITY,	T	
DEPTH SCALE METRES				LOT		~		3m		40		80	10 ⁻⁶		0 ⁻⁴ 10 ⁻³	ADDITIONAL	PIEZOMETER OR
PTH			DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRE Cu, kPa	NGTH	nat V	Q - •	WATER		PERCENT		STANDPIPE INSTALLATION
DE				STRA	(m)	S	-	BLO\		40			Wp I ─			44	Š
	<u> </u>	+	GROUND SURFACE	0,	276.98				20	40	60	80	10	20 3	30 40		
— 0 -			TOPSOIL	EEE	0.00 276.75												-
Ė		l	(ML) sandy SILT, trace gravel; brown; non-cohesive, moist, compact		0.23	1	SS	11]
_			non-conesive, moist, compact		276 20												_
-			(ML-CL) SILT and SAND, some gravel; brown, oxidation staining (TILL);	4	276.29	-	1										-
_ 1			cohesive, w~PL to w <pl, hard<="" stiff="" td="" to=""><td>9 8</td><td></td><td>2</td><td>ss</td><td>18</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td>_</td></pl,>	9 8		2	ss	18									_
-							-										-
E																	
-						3	SS	13									-
-						3	33	13									
2 _				4	1												-
				4													
ļ.						4	SS	25									_
F				F ₀ 4	1		1										
_ 3	_	_			1	<u> </u>	-										-
_						5	SS	42									_
-							-										
-																	=
_ _ 4]
_ `				4 4													=
-					1												-
F				4	1												-
E						6	SS	55									
5 _				7,14													_
-				9 4													
E			- Auger grinding at 5.5 m	4 4]
_					:		1										=
_ 6					270.88	7	SS	40					9				
E			END OF BOREHOLE	2.11	6.10												
_			NOTE:														_
-			1. Borehole dry upon completion of														=
- - - 7			drilling, Oct. 5/2017.														=
E ']
_																	-
-																	=
Ē]
- 8]
ļ.																	
F																	=
E]
- - 9																	
ļ																	-
Ē																	
Ė]
— 10																	
	_			1	<u> </u>	<u> </u>							<u> </u>				1
DE	PT	H S	CALE						S G C	S L .	DE	D					LOGGED: RV

GOLDER

GTA-BHS 001 X:\CAD ARCHIVE (PRE-2014)\MISSISSAUGA\PROJECTS\2012\1186-0047\(GERANIUM\) PICKERING\\()ILOG\1211860047\(GP)\) GAL-MIS\GDT 2\\(27718\) MK 2012

RECORD OF BOREHOLE: BH17-11

> DATUM: Geodetic BORING DATE: October 05, 2017

SHEET 1 OF 2

պ	00	SOIL PROFILE			SA	MPLE	s	NAMIC PENETRATION \ SISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ا ی	D:==0.
DEPTH SCALE METRES	BORING METHOD		LO ₁		œ		3m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
AET	NGN	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	EAR STRENGTH nat V. + Q - •	WATER CONTENT PERCENT	3.EE	STANDPIPE INSTALLATION
בַּל	30RI.		TRA	DEPTH (m)	N	-	3LOV	, kPa rem V. ⊕ Û - Ō	Wp I WI	I ABI	
	ш.	GROUND SURFACE	ού	. ,		\dashv	ш	20 40 60 80	10 20 30 40	+	
0		TOPSOIL		269.14							
		(ML) sandy SILT, trace gravel; brown to dark brown, oxidation staining, rootlets; non-cohesive, moist, compact		0.10	1	SS	17		o		
1				267.77	2	SS	16		0		
		(ML-CL/ML) SILT and SAND to sandy SILT, some gravel; brown, oxidation staining (TILL); cohesive, w>PL to w <pl, hard<="" stiff="" td="" to=""><td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td>1.37</td><td>3</td><td>ss</td><td>7</td><td></td><td></td><td></td><td></td></pl,>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.37	3	ss	7				
2			4 4 4 4 4		4	ss	15				
. 3			A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								Bentonite Seal
		- Wet inclusion at 3.3 m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5	ss	31		0		
4	, ,		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								
5			42424242		6	ss _c	79/).23		0 1	МН	
6		- Auger grinding at 6.7 m	3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4		7	ss d	99/).25		0		Silica Sand Filter and Screen
. 7			D D D D D D D D D D D D D D D D D D D	261.11	8	ss	94/).25		o		
		END OF BOREHOLE		8.03							
		NOTES: 1. Groundwater encountered at a depth of 3.0 m during drilling on Oct. 5 /2017.									
9		Groundwater measured in open borehole at a depth of 3.6 m upon completion of drilling on Oct. 5/2017.									
		3. Groundwater level measured in monitoring well at a depth of 6.91 m on Oct. 26/2017.									
10		4. Water level in monitoring well	l	↓			_	_	 	_	
		CONTINUED NEXT PAGE									

LOCATION: SEE FIGURE 2

BH17-11 **RECORD OF BOREHOLE:**

SHEET 2 OF 2 DATUM: Geodetic BORING DATE: October 05, 2017

	.,	T HAMMER: MASS, 64kg; DROP, 760mm															YPE: AUTOMATIC
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	1_		SAI	MPLE		DYNAMIC PEN RESISTANCE,			,		ONDUCT		Ţ	AL NG	PIEZOMETER
TRES	MET		STRATA PLOT	ELEV.	H	_ [BLOWS/0.3m				30 `		 		0-3	ADDITIONAL LAB. TESTING	OR STANDPIPE
ΪÃ	RING	DESCRIPTION	ATA !	DEPTH	NUMBER	TYPE	/S/M	SHEAR STREI Cu, kPa	NGTH i	nat V. + rem V. ⊕	Q - • U - O	l	ONTENT	PERCE		B. T	INSTALLATION
วั	ВОБ		STR/	(m)	ž	-	BLO				30	Wr 1	\		WI 40	^ 5	
		CONTINUED FROM PREVIOUS PAGE	1			+	\dashv	20	1			<u> </u>	.5 3		1		
10		measured at a depth of 7.14 m below					1										
		ground surface or at an elevation of 262.00 m above sea level, Jan. 23/18.															
11																	
''																	
12																	
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	
							L					<u> </u>					
DEI	PTH S	CALE						GC	ו כ) F I	D					L	OGGED: RV

RECORD OF BOREHOLE:

BH17-12

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: SEE FIGURE 2

BORING DATE: October 06, 2017

ш	ОО	SOIL PROFILE			SAN	/IPLES	DYNAN RESIST	IIC PENET	TRATIO LOWS/0	N .3m	1	HYDR/	AULIC C k, cm/s	ONDUCT	IVIIY,	Т	(0)	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE BLOWS/0.3m			60	8		w	0 ⁻⁶ 1 L ATER C	ONTENT	PERCE	10 ⁻³ :NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
DE	BORI		STRA	DEPTH (m)	Ž	- 2	Cu, kPa							O 3		WI 40	FE A	
0		GROUND SURFACE TOPSOIL	EEE	271.00 0.00	-	+											+	
		(ML) sandy SILT, trace gravel; brown, oxidation staining, rootlets; non-cohesive, moist, compact		0.15	1	SS 1							0					
1		(ML-CL) SILT and SAND, some gravel; brown, oxidation staining (TILL); cohesive, w <pl stiff="" stiff<="" td="" to="" very="" w~pl,=""><td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td>270.31 0.69</td><td>2</td><td>SS 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></pl>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	270.31 0.69	2	SS 1							0					
			A A A A A A A A A A A A A A A A A A A		3	SS 1							0					
2		- Auger grinding at 2.1 m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			33 11												
			4 4 4 4 4 4		4	SS 2							0					
3	,		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5	SS 2:							0					
			4 4 4 4 4 4															
4			4 2 4 4 2 4															
5			7 4 7 4 4		6	SS 2							0					
			2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4															
6		END OF BOREHOLE	A A A A A A A A A A A A A A A A A A A	264.90 6.10	7	SS 2:							0					
		NOTE: 1. Borehole dry upon completion of																
7		drilling on Oct. 6/2017.																
8																		
9																		
10																		
DF	PTH S	CALE					\$				_						10	GGED: RV

RECORD OF BOREHOLE:

BH17-13

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: SEE FIGURE 2

BORING DATE: October 06, 2017

	0	SOIL PROFILE			٥,٨	MPLE	_	DYNAMIC PENETRATION \	HYDRAULIC C	ONDUCTIVITY, T		
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	L		SA			DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	k, cm/s		ADDITIONAL LAB. TESTING	PIEZOMETER
걸	MET		10,		iK.		.3m	20 40 60 80	10 ⁻⁶ 1	0 ⁻⁵ 10 ⁻⁴ 10 ⁻³	NON	OR
	NG	DESCRIPTION	₹	ELEV.	NUMBER	TYPE	VS/C	SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○	WATER C	ONTENT PERCENT	3. TE	STANDPIPE INSTALLATION
7_	30RI		STRATA PLOT	DEPTH (m)	NON.	-	BLOWS/0.3m		Wp I		¥₹	
		CPOLIND SUBFACE	ς.			\vdash	ш	20 40 60 80	10 :	20 30 40	+-	
0	\vdash	GROUND SURFACE TOPSOIL	_ E==	272.32		\vdash	-				-	
		(ML) SILT, some sand; dark brown;		0.00 272.12 0.20		[_						
		non-cohesive, moist, loose			1	SS	7				1	
				271.63								
		(ML-CL) SILT and SAND, some gravel; brown, oxidation staining (TILL); cohesive, w>PL to w~PL, firm to hard	4 A A	0.69	_	$\left\{ \ \ \right\}$						
1		cohesive, w>PL to w~PL, firm to hard	9 4		2	ss	10		0			
			4			1						
					3	ss	6		0			
2											1	
				:								
			1]		1						
			40		4	ss	17		0			
3												
						1					1	
			4 4	1	5	SS	21		P		1	
			9014]								
4			4									
·			70 4	:							1	
			4	1							1	
]								
					6	ss	34					
5				:		~	-		7			
Ĭ			7015	:								
		- Auger grinding at 5.2 m - Grey at 5.3 m	70 4	1								
		,									1	
6					7	SS	11		q			
Ĭ	\vdash	END OF BOREHOLE	17.14	266.22		\vdash	\dashv					
		NOTE:									1	
		Borehole dry upon completion of drilling on Oct. 6/2017.									1	
7												
′											1	
8												
0											1	
											1	
9												
9												
											1	
10												
10											1	
DF	PTH S	CALE						GOLDER			14	OGGED: RV
							Ŋ,	№ GULDER				- 30-5. 117

PROJECT: 12-1186-0047 LOCATION: SEE FIGURE 2 **RECORD OF BOREHOLE:** BH17-14

> DATUM: Geodetic BORING DATE: October 04, 2017

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

SHEET 1 OF 1

٣	HOB	SOIL PROFILE			SAN	/PLE	s	DYNAMIC PENETRAT RESISTANCE, BLOW	ION S/0.3m)	HYDRAULIC CONDUCT k, cm/s	TIVITY,	- Q	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	1	Q - • U - ○	WATER CONTENT		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
<u>ت</u>	BOF		STR,	(m)	ž		BLC	20 40	60 8	30		→ WI 30 40	45	
- 0		GROUND SURFACE		278.67										
		TOPSOIL (ML) SILT, some sand, trace gravel; light brown to brown, rootlets; non-cohesive, moist, loose to compact		0.00 0.15	1A 1B	ss	9				0			
1					2	ss	11				0			
. 2		(ML-CL/ML) SILT and SAND to sandy SILT, some gravel; brown, oxidation staining (TILL); cohesive, w <pl, stiff<br="" very="">to hard</pl,>	4.4 4.4	276.89 1.78	3A 3B	ss	16				0			
		to naru	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4	ss :	36				♦ ⊢-1		мн	Bentonite Seal
- 3			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5	ss :	33							
. 4		- Sand inclusion at 4.8 m and 6.4 m	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6	SS	63				0			<i>र</i> ्रेस्ट,
7		- Auger grinding at 7.3 m	7 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4		7	ss (64				0			Silica Sand Filter and Screen
8		END OF BOREHOLE NOTE: 1. Borehole dry upon completion of drilling on Oct. 4/2017. 2. Monitoring well dry on Oct. 30/2017. 3. Monitoring well was dry on Jan. 23/18.	4 4	270.91 7.76	8	ss s	550/							
- 10														
DE	PTH S	CALE	<u>I</u>	<u> </u>		j		GOL	DEI	R		1	L	OGGED: RV

RECORD OF BOREHOLE: BH17-15

SHEET 1 OF 1

LOCATION: SEE FIGURE 2

1:50

BORING DATE: October 10, 2017

DATUM: Geodetic

CHECKED: AJH

HAMMER TYPE: AUTOMATIC SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m NUMBER STANDPIPE INSTALLATION TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. - WI Wp (m) 60 GROUND SURFACE 276.53 TOPSOIL 0.00 276.33 (ML) SILT, some sand; light brown, rootlets; non-cohesive, moist, compact SS 14 0 275.84 0.69 (ML-CL) SILT and SAND, trace to some gravel; brown, oxidation staining (TILL); cohesive, w~PL to w<PL, stiff to hard 2 SS 13 0 - Auger grinding at 1.2 m, 4.5 m and 5.5 m $\,$ SS 23 3 2 GTA-BHS 001 X:ICAD_ARCHIVE (PRE-2014)MISSISSAUGAIPROJECTSI2012/12-1186-0047 (GERANIUM, PICKERING)ILOG11211860047.GPJ GAL-MIS.GDT 2/27/18 MK 2012 SS 49 3 5 SS 42 - Sand inclusion at 3.4 m SS 65 6 0 SS 50/ 0.13 7 0 270.61 5.92 END OF BOREHOLE NOTE: 1. Borehole dry upon completion of drilling on Oct. 10/2017. 9 10 DEPTH SCALE GOLDER LOGGED: RV

PROJECT: 12-1186-0047 LOCATION: SEE FIGURE 2 **RECORD OF BOREHOLE:** BH17-16

SHEET 1 OF 2 DATUM: Geodetic BORING DATE: October 06, 2017

щ	ПОР	SOIL PROFILE			SA	MPLE	s	NAMIC PENETRATION SSISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	وَدِ []	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 HEAR STRENGTH nat V. + Q - 4 rem V. ⊕ U - (Wp I → W I WI		OR STANDPIPE INSTALLATION
_		GROUND SURFACE	(V)	275.11			1	20 40 60 80	10 20 30 40		
0		TOPSOIL		0.00 274.91			1				
		(ML) SILT, some sand; brown, rootlets; non-cohesive, moist, compact		0.20 274.42	1	SS	17				
1		(ML-CL/ML) SILT and SAND to sandy SILT, some gravel; brown, oxidation staining (TILL); cohesive, w~PL to w <pl, hard<="" stiff="" td="" to="" very=""><td>44444</td><td>0.69</td><td>2</td><td>SS :</td><td>21</td><td></td><td>0</td><td></td><td>Ā</td></pl,>	44444	0.69	2	SS :	21		0		Ā
			AAAAAA		3	SS	15		0		
2			4 4 4 4								
		- Auger grinding at 2.7 m, 4.5 m, 5.1 m	4 4 4 4		4	ss	31				
3		and 6.9 m				!	50/				Bentonite Seal
			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5	ss o	0.05		0		
5	1		1 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		6	ss 5	50/).10				
6			3 4 2 3 4 2 3 4 2 3 4 2 4 2 4 2 4 2 4 2		7	ss g	98/).25		0 — 1	МН	
7		- Grey at 7 m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		8	AS			0		Silica Sand Filter and Screen
			4 4 4 4 4 4	267.21	9	ss o	50/).13		0		
8		END OF BOREHOLE NOTES:		7.90							
		1. Groundwater encountered at a depth of 6.0 m during drilling on Oct. 6/2017.									
. 9		Groundwater measured in open borehole at a depth of 7.1 m upon completion of drilling on Oct. 6/2017.									
		3. Groundwater measured in monitoring well at a depth of 2.47 m on Oct. 30/2017.									
- 10		4. Water level in monitoring well measured at a depth of 1.25 m below									
IU		CONTINUED NEXT PAGE		T				- - - -	T		

LOCATION: SEE FIGURE 2

BH17-16 **RECORD OF BOREHOLE:**

SHEET 2 OF 2

BORING DATE: October 06, 2017

DATUM: Geodetic

		T HAMMER: MASS, 64kg; DROP, 760mm			CAI	MPLE	- <u>.</u> T	DYNAMIC I	PENETRAT	ION	\	HYDRA	AULIC C	ONDUC	TIVITY.			PE: AUTOMATIC
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	F				- 1	DYNAMIC I RESISTAN			,		k, cm/s				ADDITIONAL LAB. TESTING	PIEZOMETER
TRE	G ME	P=000:P=00:	STRATA PLOT	ELEV.	3ER	پر	BLOWS/0.3m	20 SHEAR ST	40 RENGTH		80 O - •	10 W		0 ⁻⁵ 1 L ONTENT	1	10 ⁻³	TEST	OR STANDPIPE
ME)RIN(DESCRIPTION	RATA	DEPTH	NUMBER	TYPE	.OWS	Cu, kPa	LINGIN	nat V. + rem V. ⊕	ŭ- Ö	We		ONTENT OWNER		WI	ADD (AB.	INSTALLATION
	BC		STI	(m)	_		В	20	40	60	80					40		
10		CONTINUED FROM PREVIOUS PAGE																
		ground surface or at an elevation of 273.86 m above sea level, Jan. 23/18.																
11																		
12																		
.2																		
13																		
14																		
15																		
16																		
10																		
17																		
18																		
10																		
19																		
20																		
20																		
											1							
DE	PTH S	SCALE						G	O L	DF	R						LO	GGED: RV
1:	50					-											01.15	CKED: AJH

PROJECT: 12-1186-0047 LOCATION: SEE FIGURE 2 **RECORD OF BOREHOLE:**

BH17-17 SHEET 1 OF 1

BORING DATE: October 10, 2017

DATUM: Geodetic

HAMMER TYPE: AUTOMATIC SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m NUMBER STANDPIPE INSTALLATION TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW - wi Wp (m) 60 GROUND SURFACE 273.59 TOPSOIL 0.00 273.39 (ML) sandy SILT, trace gravel; brown, SS 20 0 trace rootlets; non-cohesive, moist, compact 272.90 0.69 (ML-CL) SILT and SAND, some gravel; brown, oxidation staining (TILL); cohesive, w~PL to w<PL, stiff to hard 2 SS 13 SS 10 SS 29 0 3 5 SS 13 0 SS 6 52 C - Auger grinding at 5.5 m SS 87 267.49 END OF BOREHOLE NOTES: 1. Groundwater encountered at a depth of 4.0 m during drilling on Oct. 10/2017. 2. Groundwater measured in open borehole at a depth of 4.8 m upon completion of drilling on Oct. 10/2017. 9 10 DEPTH SCALE GOLDER LOGGED: RV

GTA-BHS 001 X:ICAD_ARCHIVE (PRE-2014)MISSISSAUGAIPROJECTSI2012/12-1186-0047 (GERANIUM, PICKERING)ILOG11211860047.GPJ GAL-MIS.GDT 2/27/18 MK 2012

RECORD OF BOREHOLE: BH17-18

SHEET 1 OF 2

DATUM: Geodetic

LOCATION: SEE FIGURE 2

BORING DATE: October 10, 2017

ц	Ф	SOIL PROFILE			SA	MPLE	ES	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ا_ق	DIE 701 45 TEC
DEPIH SCALE METRES	BORING METHOD		LOT		2		3m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
	NGN	DESCRIPTION	IA PI	ELEV.	NUMBER	TYPE	VS/0.	SHEAR STRENGTH nat V. + Q - C		ĮĘË.	STANDPIPE INSTALLATION
ם ב	30RI		STRATA PLOT	DEPTH (m)	N	<u>-</u>	BLOWS/0.3m	Cu, kPa rem V. ⊕ U - C	Wp I 	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
		GROUND SURFACE	ò				ш	20 40 60 80	10 20 30 40		
0		TOPSOIL	EEE	270.47 0.00 270.27							
		(ML) sandy SILT; light brown, rootlets;	ĪĪĪ	270.27	1	ss	10				
		non-cohesive, moist, compact									
		(ML-CL/ML) SILT and SAND to sandy	<i>a</i> 4	269.78							
		SILT, some gravel; brown to grey,	4	0.03							<u> </u>
1		oxidation staining (TILL); cohesive, w~PL to w <pl, hard<="" stiff="" td="" to=""><td></td><td></td><td>2</td><td>SS</td><td>12</td><td></td><td></td><td></td><td></td></pl,>			2	SS	12				
			4								
			70,4	}	3	ss	20			1	
2				1							
										1	Bentonite Seal
					4	SS	27				
,				:							
3			40]							
			4	1	5	SS	18		9		
			40								
4			4 4								
											8
				:							
5			4 7		6	SS	57				8
,		- Auger grinding at 5.1 m and 6.6 m	70 4]							
				1							
				1							
			7 4	1							
6		- Sand inclusion at 6 m	9 A. 9 19								Silica Sand Filter and Screen
			4 4		7	ss	86/ 0.28				and octeen
7											
				:							
			3	:							
]	8	ss	15				
8		END OF BOREHOLE	14 15	262.39 8.08		\vdash					
		NOTES:									
		Groundwater encountered at a depth									
		of 6.0 m during drilling on Oct. 10/2017.									
9		2. Groundwater measured at a depth of 5.7 m upon completion of drilling on Oct. 10/2017.									
		Groundwater level measured in monitoring well at a depth of 2.18 m on Oct. 30/2017.									
40		4. Water level in monitoring well									
10		CONTINUED NEXT PAGE		T					T		
				1	ı					1	<u> </u>
DE	ртн 9	SCALE						GOLDER			OGGED: RV

LOCATION: SEE FIGURE 2

BH17-18 **RECORD OF BOREHOLE:**

DATUM: Geodetic BORING DATE: October 10, 2017

SHEET 2 OF 2

щ	QO	SOIL PROFILE			SAI	MPLE	s	DYNAMIC PEI RESISTANCE	NETRATIONS, BLOWS	ON /0.3m	1	YDRAULIC CONDUCTIVITY, k, cm/s					PIEZOMETER			
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	.3m		40 (06	30 ``	10 WA	6 10 TER CC	ontent o	PERCE		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION		
	ĕ		ST	(m)		\dashv	H B	20	40	50 8	80	10				0	\vdash			
· 10 ·		— CONTINUED FROM PREVIOUS PAGE — measured at a depth of 0.82 m below ground surface or at an elevation of 269.65 m above sea level, Jan. 23/18.																		
12																				
· 13																				
- 14																				
15																				
16																				
17																				
- 17 - 18 - 19 - 20 DEI																				
19																				
- 20																				
DEI	PTH S	CALE						GC	\	\ _	D						LO	GGED: RV		

BH17-19 **RECORD OF BOREHOLE:**

SHEET 1 OF 1

LOCATION: SEE FIGURE 2

BORING DATE: October 10, 2017

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

DESCRIPTION ROUND SURFACE DPSOIL LL) sandy SILT, trace gravel; dark bown to brown, rootlets; non-cohesive, bist, compact to loose IL-CL) SILT and SAND, some gravel; bown to grey, oxidation staining (TILL); hesive, w~PL to w <pl, 2.9="" at="" firm="" grey="" hard="" m<="" th="" to=""><th> ∢</th><th>268.56 0.00 268.36 0.20</th><th>2A 2B \$ \$</th><th>E:0/SMO78</th><th>SHEAR S Cu, kPa</th><th>40 TRENGTH</th><th>60 60 </th><th>80 + Q - • • • • • • • • • • • • • • • • • •</th><th>Wp 1</th><th>ATER CO</th><th>DNTENT PE</th><th> wi</th><th>THE ADDITIONAL LAB.TESTING</th><th>OR STANDPIPE INSTALLATION</th></pl,>	∢	268.56 0.00 268.36 0.20	2A 2B \$ \$	E:0/SMO78	SHEAR S Cu, kPa	40 TRENGTH	60 60	80 + Q - • • • • • • • • • • • • • • • • • •	Wp 1	ATER CO	DNTENT PE	wi	THE ADDITIONAL LAB.TESTING	OR STANDPIPE INSTALLATION
DPSOIL IL) sandy SILT, trace gravel; dark own to brown, rootlets; non-cohesive, bist, compact to loose IL-CL) SILT and SAND, some gravel; own to grey, oxidation staining (TILL); hesive, w~PL to w <pl, firm="" hard<="" th="" to=""><th></th><th>268.56 0.00 268.36 0.20</th><th>1 S S S S S S S S S S S S S S S S S S S</th><th>S 10 S 4 S 13 S 50</th><th>20</th><th>40</th><th>60</th><th>80</th><th>1</th><th>0 2</th><th></th><th></th><th></th><th></th></pl,>		268.56 0.00 268.36 0.20	1 S S S S S S S S S S S S S S S S S S S	S 10 S 4 S 13 S 50	20	40	60	80	1	0 2				
DPSOIL IL) sandy SILT, trace gravel; dark own to brown, rootlets; non-cohesive, bist, compact to loose IL-CL) SILT and SAND, some gravel; own to grey, oxidation staining (TILL); hesive, w~PL to w <pl, firm="" hard<="" td="" to=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>0.00 268.36 0.20</td><td>2A 2B \$ \$</td><td>S 13 S 50</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>МН</td><td>Bentonite Seal</td></pl,>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 268.36 0.20	2A 2B \$ \$	S 13 S 50						0			МН	Bentonite Seal
IL) sandy SILT, trace gravel; dark own to brown, rootlets; non-cohesive, oist, compact to loose IL-CL) SILT and SAND, some gravel; own to grey, oxidation staining (TILL); hesive, w~PL to w <pl, firm="" hard<="" td="" to=""><td></td><td>0.20</td><td>2A 2B \$ \$</td><td>S 13 S 50</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>мн</td><td>Bentonite Seal</td></pl,>		0.20	2A 2B \$ \$	S 13 S 50						0			мн	Bentonite Seal
hesive, w~PL to w <pl, firm="" hard<="" td="" to=""><td>4 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td></td><td>2B S S S S S S S S S S S S S S S S S S S</td><td>S 13</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>мн</td><td>Bentonite Seal</td></pl,>	4 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2B S S S S S S S S S S S S S S S S S S S	S 13						0			мн	Bentonite Seal
	\$4. \$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2		4 8	S 50						⊕ I			МН	Bentonite Seal
	4 9 4 9 4 8 9 4 8 9 4 8 9 8 9 8 9 8 9 8								0					Bentonite Seal
	1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2		5 8	S 47										Bentonite Seal
Sand inclusion at 4.0 m	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									Þ				
auger grinding at 5.2 m	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		6 8	50/ 0.13					0					
	1		7 S	50/ 0.10					0					8,245,67 2,7
														Silica Sand Filter and Screen
ND OF BOREHOLE		260.84 7.72	8 8	S 50/ 0.10					0					
OTES:														
Groundwater encountered at a depth 6.0 m during drilling on Oct. 10/2017.														
Groundwater measured at a depth of 2 m upon completion of drilling on Oct. //2017.														
Groundwater level measured in onitoring well at a depth of 1.16 m on t. 26/2017.														
Water level in monitoring well easured at a depth of 0.22 m above ound surface or at an elevation of 8.78 m above sea level, Jan. 23/18														
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	D OF BOREHOLE OTES: Groundwater encountered at a depth 6.0 m during drilling on Oct. 10/2017. Groundwater measured at a depth of 1 m upon completion of drilling on Oct. 2017. Groundwater level measured in onitoring well at a depth of 1.16 m on t. 26/2017. Water level in monitoring well assured at a depth of 0.22 m above and surface or at an elevation of	D OF BOREHOLE OTES: Groundwater encountered at a depth 6.0 m during drilling on Oct. 10/2017. Groundwater measured at a depth of m upon completion of drilling on Oct. 2017. Groundwater level measured in initoring well at a depth of 1.16 m on t. 26/2017. Water level in monitoring well assured at a depth of 0.22 m above and surface or at an elevation of 8.78 m above sea level, Jan. 23/18	D OF BOREHOLE 7.72 TES: Groundwater encountered at a depth 5.0 m during drilling on Oct. 10/2017. Groundwater measured at a depth of m upon completion of drilling on Oct. 2017. Groundwater level measured in miltoring well at a depth of 1.16 m on t. 26/2017. Water level in monitoring well assured at a depth of 0.22 m above und surface or at an elevation of 3.78 m above sea level, Jan. 23/18	D OF BOREHOLE TES: Groundwater encountered at a depth 6.0 m during drilling on Oct. 10/2017. Groundwater measured at a depth of m upon completion of drilling on Oct. 2017. Groundwater level measured in initoring well at a depth of 1.16 m on t. 26/2017. Water level in monitoring well assured at a depth of 0.22 m above and surface or at an elevation of 3.78 m above sea level, Jan. 23/18	D OF BOREHOLE TES: Groundwater encountered at a depth 6.0 m during drilling on Oct. 10/2017. Groundwater measured at a depth of m upon completion of drilling on Oct. 2017. Groundwater level measured in mitoring well at a depth of 1.16 m on t. 26/2017. Water level in monitoring well assured at a depth of 0.22 m above bund surface or at an elevation of 8.78 m above sea level, Jan. 23/18	TO OF BOREHOLE TES: Groundwater encountered at a depth of m upon completion of drilling on Oct. 10/2017. Groundwater level measured in miltoring well at a depth of 1.2017. Groundwater level in monitoring well assured at a depth of 0.22 m above and surface or at an elevation of 8.78 m above sea level, Jan. 23/18	D OF BOREHOLE TES: Groundwater encountered at a depth of the upon completion of drilling on Oct. 2017. Groundwater level measured in miltoring well at a depth of 1.26/2017. Groundwater level in monitoring well assured at a depth of 0.22 m above and surface or at an elevation of 8.78 m above sea level, Jan. 23/18	D OF BOREHOLE TES: Groundwater encountered at a depth of the upon completion of drilling on Oct. 10/2017. Groundwater level measured in miltoring well assured at a depth of 1.2017. Water level in monitoring well assured at a depth of 0.22 m above and surface or at an elevation of 8.78 m above sea level, Jan. 23/18	D OF BOREHOLE TES: Groundwater encountered at a depth of the upon completion of drilling on Oct. 2017. Groundwater level measured in mitoring well at a depth of 1.16 m on t. 26/2017. Water level in monitoring well assured at a depth of 0.22 m above and surface or at an elevation of 8.78 m above sea level, Jan. 23/18	To SS 50/ 0.10 To SS 50/ 0.10	D OF BOREHOLE TES: Groundwater encountered at a depth of m upon completion of drilling on Oct. 10/2017. Groundwater level measured in milotring well assured at a depth of 1.20 m down at a depth of 1.30 m during drilling on Oct. 2017. Water level in monitoring well assured at a depth of 0.22 m above und surface or at an elevation of 8.78 m above sea level, Jan. 23/18	D OF BOREHOLE TES: Groundwater encountered at a depth 6,0 m during drilling on Oct. 10/2017. Groundwater measured at a depth of the upon completion of drilling on Oct. 2017. Groundwater level measured in ontoring well assured at a depth of 1.6 m on t. 26/2017. Water level in monitoring well assured at a depth of 0.22 m above und surface or at an elevation of 9.78 m above sea level, Jan. 23/18	D OF BOREHOLE Total T	D OF BOREHOLE TES: Groundwater encountered at a depth of in upon completion of drilling on Oct. 10/2017. Groundwater was ured at a depth of in upon completion of drilling on Oct. 2017. Groundwater level measured in minioring well assured at a depth of 1.16 m on 1.26/2017. Water level in monitoring well assured at a depth of 0.22 m above und surface or at an elevation of 8.78 m above sea level, Jan. 23/18

LEGEND

APPROXIMATE SITE LOCATION

PROJECT PRELIMINARY HYDROGEOLOGICAL ASSESSMENT PROPOSED RESIDENTIAL DEVELOPMENT

TITLE

PHYSIOGRAPHY

- ALL LOCATION ARE APPROXIMATE CHAPMAN & PUTNAM, OPEN GOVERNMENT OF CANADA LICENCE

REFERENCE(S)

PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 17N

GOLDER MEMBER OF WSP

5113 OLD BROCK ROAD, CLAREMONT

YYYY-MM-DD 2021-07-22 DESIGNED PREPARED JPR REVIEWED APPROVED CMK

PROJECT NO. 1211860047

CONSULTANT

CONTROL 0002

REV.

FIGURE

1A

GRAIN SIZE DISTRIBUTION

(ML-CL) SILT and SAND TILL

FIGURE 3

LEGEND

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m)
•	17-19	3	1.7
	17-14	4	2.5
*	17-7	5	3.2
A	17-11	6	4.8
∇	17-16	7	6.3

Project Number: 12-1186-0047

Checked By: AJH

Golder Associates

Date: 03-Nov-17

Oct 75, FF-S-21

(ML-CL) SILT and SAND TILL

Project No. 12-1186-0047 Checked By: AJH

July 26, 2021 12-1186-0047 (7000)

APPENDIX A

Table B1 – Water Level Data

Table B-1: Groundwater Depths and Elevations

Proposed Residential Subdivision, Claremont, City of Pickering, Ontario

Location	Ground Surface	Top of Pipe Elev.	2-Ma	r-2012	5-Mar	-2012	2-Арі	r-2012	26,30-	Oct-17	9-Nov	/-2017	14-No	v-2017	18-Jai	n-2018	23-Ja	n-2018
	(masl)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)
BH12-2	269.61	270.59	1.00	268.61	1.01	268.60	1.18	268.43	3.27	266.34	3.28	266.34	3.27	266.34	1.57	268.04	0.42	269.19
BH12-4	272.19	273.20	4.43	267.76	4.85	267.34	4.52	267.67	7.24	264.95	7.43	264.76	-	-	2.63	269.56	2.17	270.02
BH12-6	267.03	267.93	5.57	261.46	5.60	261.43	5.57	261.46	5.91	261.12	5.89	261.14	5.92	261.11	5.89	261.14	5.84	261.19
BH17-7	274.95	275.91	-	-	-	-	-	-	5.53	269.42	5.71	269.24	5.75	269.20	4.59	270.36	4.66	270.29
BH17-8	267.86	268.82	-	-	-	-	-	-	4.14	263.73	4.03	263.84	4.08	263.78	2.68	265.18	2.60	265.26
BH17-9	272.19	273.12	-	-	-	-	-	-	7.36	264.83	7.55	264.64	7.61	264.58	6.43	265.76	5.95	266.24
BH17-11	269.14	269.97	-	-	-	-	-	-	7.01	262.13	7.11	262.03	7.13	262.01	7.24	261.90	7.14	262.00
BH17-14	278.67	279.62	-	-	-	-	-	-	dry	<271.07								
BH17-16	275.11	275.91	-	-	-	-	-	-	2.62	272.50	2.63	272.48	2.59	272.52	1.35	273.76	1.25	273.86
BH17-18	270.47	271.31	-	-	-	-	-	-	2.27	268.20	1.79	268.68	1.76	268.71	1.05	269.42	0.82	269.65
BH17-19	268.56	269.55	-	-	-	-	-	-	1.23	267.33	0.66	267.90	0.46	268.10	-0.09	268.65	-0.22	268.78

Notes:

1. Elevations based on survey coordinates provided by Rady-Pentek Edwards masl = metres above sea level

mbgs = metres below ground surface

- = no data available

0.73 = data in **bold italicized** font represents ice surface

golder.com